A cavity wall is designed to prevent moisture penetrating to the inside face of the wall and causing damp problems in the building.

In many situations it is necessary to include cavity trays in the wall, to prevent water penetration to the inner leaf.

Cavity tray problems
Cavity trays usually require complex shapes, joints and support, which are extremely difficult to form on site using sheet dpc materials. As a result, many instances of damp penetration result from incorrectly installed cavity trays.

This occurs mainly where the cavity is bridged, eg by lintels above door and window openings, over air bricks, ducting, meter boxes etc and where an external wall becomes an internal wall at a lower level, eg pitched or flat roof abutments, parapet walls.
CAVITY TRAYS INTRODUCTION

TECHNICAL REQUIREMENTS

Cavity wall design
In cavity walls, dpc design should be based on the assumption that rain will penetrate the outer leaf of brickwork or blockwork and run down the inside face of the wall. Anything which crosses or obstructs the cavity can form a bridge allowing water to cross and soak through the inner leaf, causing damp within the building.

For this reason, building regulations require cavity trays to prevent water penetration where the cavity of an external wall is bridged or where an external wall becomes an internal wall at a lower level. Cavity trays are designed to ensure that water is diverted to the outer leaf or clear of the bridge.

Cavity trays are necessary in both double leaf masonry construction and masonry cladding to timber frame construction.

Where cavity trays are needed
To prevent rain penetration to the inner leaf, cavity trays are needed:
- Where an external wall becomes an internal wall at lower level, eg at roof/wall abutments and parapets.
- Where the wall cavity is bridged, eg by a lintel, air brick, ducting or meter box.

Open porches/car ports
Cavity trays are only required at roof abutments where the abutment wall becomes an inner wall below the roofline. Open porches and car ports are not habitable spaces, and therefore are not required to have cavity trays. However, if it is possible that a future occupier might enclose the space, we advise installing cavity trays when first building, to save costly retro-fitting at a later date.

TECHNICAL SOLUTIONS

Approved Document C Site preparation and resistance to contaminants and moisture
Approved Document C does not give detailed solutions using cavity trays, but refers to BS codes. The Z-Led solutions shown on following pages enable the recommendations of these codes to be met.

Internal and external walls (moisture from the ground)
5.4 - 5.6 Technical solution includes a damp-proof course, continuous with any damp-proof membrane in the floor, and where necessary a damp-proof tray to prevent precipitation passing into the inner leaf.

Alternative approach By paragraph 5.6 the requirement can also be met by following the relevant recommendations of Clauses 4 and 5 of BS 8215 Code of practice for design and installation of damp-proof courses in masonry construction.

Cavity external walls (moisture from the outside)
5.12 - 5.15 Technical solution includes a cavity at least 50mm wide, which can be bridged only by wall ties, cavity trays provided to prevent moisture being carried to the inner leaf, and cavity barriers, firestops and cavity closures, where appropriate.

Alternative approach By paragraph 5.14 the requirement can also be met by following the relevant recommendations of BS EN 1996-2: 2006 Design of masonry structures. Design considerations, selection of materials and execution of masonry.

CONVENTIONAL TRAYS PROBLEMS

Many current failures in building construction can be traced to faulty damp-proof courses and cavity trays caused by:
- Incorrect choice of materials
- Inadequate and incorrect detailing
- Faulty installation.

Many common details required in cavity trays such as corners, ends and changes in level cannot be formed satisfactorily on site from normal dpc sheet materials. External corners in particular are almost impossible to form on site without leaving gaps where water can penetrate.

Difficult junctions have traditionally been left to the bricklayer on site to resolve. It may no longer be sufficient to rely on site expertise, and often there is little incentive for the bricklayer to do a careful job in forming corners and junctions.

Modern standards of construction demand a better solution.

Faults and solutions
Investigations by the Building Research Establishment have revealed many faults in installed dpcs and trays, see the table below.

Once the building is completed, remedial action to correct these faults is very costly.

The expense of taking the trouble to ensure a correct installation in the first place, using preformed components, is negligible compared with the cost of putting faults right after the building is completed and occupied.

<table>
<thead>
<tr>
<th>Common faults found in dpcs and trays by BRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omission of stop ends</td>
</tr>
<tr>
<td>Cut pieces butt jointed at corners</td>
</tr>
<tr>
<td>Trays not properly tucked into the lower leaf</td>
</tr>
<tr>
<td>Trays not properly supported</td>
</tr>
<tr>
<td>Trays not fixed to timber framing</td>
</tr>
</tbody>
</table>
GLIDEVALE Z-LED CAVITY TRAYS

Glidevale Z-Led solutions
The Glidevale Z-Led range of preformed cavity trays has been specifically designed to overcome all the disadvantages of conventional trays. They are easy to install and provide very reliable protection against water penetration. There are types to suit almost every instance in which cavity trays are required.

The Glidevale Z-Led Cavity Tray range has been developed over many years of intensive research and design starting from first principles. Having analysed the problems of traditional damp-proof course materials and current proprietary preformed cavity trays, Glidevale can offer the only range of cavity trays which overcomes the detailing and installation problems of existing products.

Glidevale Z-Led Cavity Trays incorporate features and benefits across the range to achieve reliability through ease of installation.

Standard and bespoke specials
Glidevale offer a full range of standard specials such as arch trays, bullseye window trays and chimney trays, and can provide quotations within 24 hours.

In addition a free design service can be provided for bespoke preformed, moulded or welded accessories including pre-creased roll to suit precise design requirements.

Technical support
Glidevale can provide a comprehensive technical advisory service covering product advice and selection, estimating, and dpc design for residential or larger commercial projects designed to meet all regulatory requirements. Simply forward floor plans, elevation and section drawings and we will prepare a detailed quotation covering all components required. Alternatively contact our Technical Services Department for assistance.

Quality assurance
The Glidevale Z-Led Cavity Tray range has been appraised under BS EN 9001 which covers design and development as well as manufacture, giving an independently audited and monitored assurance that the products are designed to meet their intended purpose.

BENEFITS
- Trays are specifically designed to avoid the faults most often encountered with conventional materials.
- All components are preformed or pre-creased, avoiding the need to create complex shapes on site.
- AT Abutment and HT Horizontal Trays are available with optional factory-fitted flashings. These are pre-shaped and securely attached to the trays, so providing a quicker and more reliable installation.
- Integral ribbing or textured finish provides an excellent mortar key.
- Manufactured from robust polypropylene sheet (unless otherwise stated in product descriptions), the trays are virtually indestructible on site.
- Resistant to acids, sulphates and alkalis likely to come into contact with the trays on site.
- One basic design is suitable for all masonry and timber-frame cavity walls.
- A simple range of components for each application makes specifying and ordering very easy.
- The majority of cavity trays are made from recyclable materials.
INTRA WEEP AT ABUTMENT TRAYS

Use
AT Abutment Trays offer preformed cavity tray solutions at the junction where the sloping edge of a pitched roof abuts a wall.

The need for a tray at this point is not always fully appreciated; flashings and soakers are not sufficient. Below the roof line the external leaf of brick or blockwork becomes an internal wall, so it is necessary to prevent any moisture that penetrates the outer leaf from running down and into the building. NHBC Standards for ‘External masonry walls’ section 6.1-D6 (a) and BS 8215 ‘Design and installation of damp proof courses in masonry construction’ specifically recommend the use of preformed abutment cavity trays.

Intra Weep AT Abutment Trays are manufactured from polypropylene and are available with optional factory-fitted AluFlash or lead flashings, avoiding the need to cut and dress flashings on site.

AT Tray range
Intra Weep Catchment Tray
The first tray to be built-in to the outer leaf. Upstands at both ends ensure water cannot enter the cavity and is safely diverted on to the roof covering. The central channel discharges any water that may run down from the trays above.

Intra Weep Apex Tray
Identical to the Catchment Tray and the last to be built-in to the outer leaf. Depending upon its position in relation to the brickwork joints, one or both upstands may need to be removed to avoid cutting bricks which will be visible on completion; this allows water to discharge to either side.

Intra Weep Intermediate Tray
Intermediate Trays are handed, with an upstand at one end preventing water from entering the cavity. Each tray has an integral weep to divert water safely on to the roof covering. Each tray must overhang the next by not less than 100mm.

Corner Catchment Tray set
For a roof abutting an external corner of a wall. It retains the integrity of the dpc, provides integral weep and reduces the visual impact of the flashing. Left hand set shown.

Abutment without cavity tray
wind-driven rain penetrates the outer leaf and flows down its inside face
stepped cover flashing
water soaks through to the inside of the wall, causing dampness and mould growth

Abutment with cavity tray
Glidevale Intra Weep Abutment Cavity Tray
wind-driven rain penetrates the outer leaf, but is caught by the cavity tray and discharged to the outside
stepped cover flashing (may be factory-fitted to tray)
Advantages

- **Integral pitch marks**
 Located on the back of each tray, these help easy and quick installation and avoid incorrect positioning on site.

- **140mm upstand**
 Meets or exceeds the requirements of BS EN 1996-2, BS 8215, and NHBC Standards. It is self-supporting, enabling the trays to be used with cavities of any width from 50mm upwards.

- **Integral weep**
 The unique integral weep discharges on to the roof slope to meet the requirement of BS 8215 that “at least one weep hole is required per cavity tray” for stepped cavity trays. Avoids the build-up of water flow towards the bottom of the run, and the risk of leakage if any one unit is badly installed, or if mortar droppings cause blockage.

- **Fleximouth mortar barrier**
 Acts as a mortar barrier on the lower leading edge of the tray during installation. Once the mortar has set, the protruding tab is pulled and the hinge breaks away leaving a 25mm deep groove in accordance with Lead Sheet Association requirements. This allows for a flashing to be installed without the need to rake out the joint, which could damage the tray.

- **Comprehensive installation instructions provided.**

AT Trays with flashing

- **Apex Tray**
- **Intermediate Tray**
- **Catchment Tray**

Universal design

For 20º to 55º roof pitches (see Table 1 overleaf).

Factory-fitted AluFlash* or lead flashing (optional)

Trays are also available with factory-fitted AluFlash or code 4 lead flashings to BS EN12588 (Code 5 available to special order). The flashing, secured by heavy duty stainless steel staples, together with the weather protection lip and the bitumen butyl seal, provides complete protection against weather giving a driving rain resistant solution in even the most exposed sites. When installed the sidelap exceeds the minimum LSA requirement of 50mm.

Before mortar has set

- Weather protection lip
- Intermittent hinge
- Protruding tab
- Mortar barrier
- 25mm deep groove

Removal of tab

- Heavy duty fixing staples
- Bitumen butyl seal

* Short flashings embossed finished, long flashings cross-corrugated finish.
Intra Weep At Abutment Trays

Typical application: alternative flashings

Continuous step flashing

Single step flashing

- Minimum 50mm overlap between flashings
- Intra Weep intermediate tray (cutting of bricks will be necessary in most cases, however flashings will cover this).

Table 1 Intra Weep AT range and Corner Catchment Tray Set for brickwork

<table>
<thead>
<tr>
<th>Tray type</th>
<th>Length (mm)</th>
<th>Code left hand</th>
<th>Code right hand</th>
<th>Code non handed</th>
<th>For roof pitches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without flashings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>310</td>
<td>AT302</td>
<td>AT301</td>
<td></td>
<td>20° - 55°</td>
</tr>
<tr>
<td>Catchment/Apex</td>
<td>320</td>
<td></td>
<td>AT300</td>
<td></td>
<td>20° - 55°</td>
</tr>
<tr>
<td>Corner Catchment Set</td>
<td></td>
<td>CCS LH</td>
<td>CCS RH</td>
<td></td>
<td>20° - 37.5°, 40° - 50°, 55°</td>
</tr>
<tr>
<td>With factory-fitted flashings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>310</td>
<td>AT302*</td>
<td>AT301*</td>
<td></td>
<td>20°, 25°, 30°, 35°, 40°, 45°, 50°, 55° **</td>
</tr>
<tr>
<td>Catchment</td>
<td>320</td>
<td>AC302*</td>
<td>AC301*</td>
<td></td>
<td>20°, 25°, 30°, 35°, 40°, 45°, 50°, 55° **</td>
</tr>
<tr>
<td>Apex</td>
<td>320</td>
<td></td>
<td>AT300*</td>
<td></td>
<td>20° - 35°, 40° - 55°</td>
</tr>
<tr>
<td>Corner Catchment Set</td>
<td></td>
<td>CC LH*</td>
<td>CC RH*</td>
<td></td>
<td>20°, 25°, 30°, 35°, 40°, 45°, 50°, 55° **</td>
</tr>
</tbody>
</table>

*Add /L for long flashing or /S for short flashing. Use long flashings for dressing over profiled tiles. Use short flashings for dressing over the upstand of soakers. For flat interlocking tiles see ASS Abutment Secret Gutter.

For 2.5° increments use the tray designed for the next higher pitch, eg for a 32.5° roof pitch, use a 35° tray.
Specification clauses

Intra Weep AT Abutment Trays for brickwork

Provide cavity trays at roof/wall abutments to comply with BS 8215. Trays to be Z-Led Intra Weep AT Abutment Trays, preformed, self-supporting, each tray with integral weep, and pitch marks.

Trays without factory-fitted flashing: After mortar has set, remove mortar protector from each tray to leave 25mm deep groove for flashing to comply with Lead Sheet Association recommendations.

Trays with factory-fitted flashing: Each tray to have factory-fitted AluFlash or code 4 lead flashing to BS EN 12588 with butyl seal between lead and tray, to suit roof pitch and covering.

Corner Catchment Tray Set for Brickwork

Provide cavity trays at corner abutment junction to comply with BS 8215. Trays to be Z-Led Corner Catchment Tray Set, preformed and self-supporting with integral bedweep.

Tray Set ref: CC R/H/LH*/ pitch L/S*, with factory-fitted AluFlash or code 4 lead flashing to BS EN 12588, with butyl seal between lead and tray, to suit roof pitch.

All trays

Install in accordance with manufacturer’s instructions.

delete as appropriate.

Supplied by Glidevale Ltd, 2 Brooklands Road, Sale, Cheshire M33 3SS, Tel: 0161 905 5700, Fax: 0161 905 2085. Email: info@glidevale.com.
Use
AT Trays for abutments to blockwork are available in three sizes for different roof pitches and course heights (see Table 2). Manufactured from polypropylene.

Intermediate Trays are handed. Catchment and Apex Trays are identical and suit all roof pitches from 25° to 55°. Due to the size of blocks compared to bricks (typically 225mm course height) the trays do not sit directly on top of each other, and the AT100 Connector Unit is used to weather the vertical face of all blocks between trays.

Typical application

AT Blockwork Tray range
Apex Tray/Catchment Tray

Intermediate Tray
right hand

Intermediate Tray
left hand

AT100 Connector Unit
(cut down for 150mm course height)

AT Blockwork Intermediate Tray with factory-fitted short AluFlash® or lead flashing dressed over gutter upstand

AT100 Connector Unit

Flat interlocking tiles

Z-Led Aluflash Secret Gutter or ASG Abutment Secret Gutter see page 22 for further details

Underlay omitted for clarity

* Short flashings embossed finished, long flashings cross-corrugated finish
Trays with factory-fitted flashing

AT Blockwork Trays are also available with optional factory-fitted AluFlash or lead flashings, avoiding the need to cut and dress flashings on site.

Catchment and Apex Trays with factory-fitted flashing differ, and the Catchment and Intermediate Trays are handed.

Table 2 AT Trays for Blockwork

<table>
<thead>
<tr>
<th>Roof pitch**</th>
<th>Course height†</th>
<th>150mm left hand</th>
<th>150mm right hand</th>
<th>225mm left hand</th>
<th>225mm right hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate Trays (with or without flashing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°</td>
<td>AT602*</td>
<td>AT601*</td>
<td>AT602*</td>
<td>AT601*</td>
<td></td>
</tr>
<tr>
<td>30°</td>
<td>AT402*</td>
<td>AT401*</td>
<td>AT602*</td>
<td>AT601*</td>
<td></td>
</tr>
<tr>
<td>35°</td>
<td>AT402*</td>
<td>AT401*</td>
<td>AT602*</td>
<td>AT601*</td>
<td></td>
</tr>
<tr>
<td>40°</td>
<td>AT302*</td>
<td>AT301*</td>
<td>AT402*</td>
<td>AT401*</td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>AT302*</td>
<td>AT301*</td>
<td>AT402*</td>
<td>AT401*</td>
<td></td>
</tr>
<tr>
<td>50°</td>
<td>AT302*</td>
<td>AT301*</td>
<td>AT302*</td>
<td>AT301*</td>
<td></td>
</tr>
<tr>
<td>55°</td>
<td>AT302*</td>
<td>AT301*</td>
<td>AT302*</td>
<td>AT301*</td>
<td></td>
</tr>
<tr>
<td>Catchment/Apex Trays (without flashing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25° - 30°</td>
<td>AT600 (non-handed)</td>
<td></td>
<td></td>
<td>AT600 (non-handed)</td>
<td></td>
</tr>
<tr>
<td>35° - 45°</td>
<td>AT300 (non-handed)</td>
<td></td>
<td></td>
<td>AT300 (non-handed)</td>
<td></td>
</tr>
<tr>
<td>50° - 55°</td>
<td>AT300 (non-handed)</td>
<td></td>
<td></td>
<td>AT300 (non-handed)</td>
<td></td>
</tr>
<tr>
<td>Catchment Trays (with flashing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25° - 30°</td>
<td>AC602*</td>
<td>AC601*</td>
<td>AC602*</td>
<td>AC601*</td>
<td></td>
</tr>
<tr>
<td>35° - 45°</td>
<td>AC302*</td>
<td>AC301*</td>
<td>AC602*</td>
<td>AC601*</td>
<td></td>
</tr>
<tr>
<td>50° - 55°</td>
<td>AC302*</td>
<td>AC301*</td>
<td>AC302*</td>
<td>AC301*</td>
<td></td>
</tr>
<tr>
<td>Apex Trays (with flashing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25° - 35°</td>
<td>AT600* (non-handed)</td>
<td></td>
<td></td>
<td>AT600* (non-handed)</td>
<td></td>
</tr>
<tr>
<td>40° - 55°</td>
<td>AT300* (non-handed)</td>
<td></td>
<td></td>
<td>AT300* (non-handed)</td>
<td></td>
</tr>
<tr>
<td>Connector Unit (used with all trays)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25° - 55°</td>
<td>AT100 (non-handed)</td>
<td></td>
<td></td>
<td>AT100 (non-handed)</td>
<td></td>
</tr>
</tbody>
</table>

*Add L for long flashing or S for short flashing and /150 or /225 to denote course height. Use long flashings for dressing over profiled tiles. Use short flashings for dressing over the upstand of soakers. For flat interlocking tiles see ASG Abutment Secret Gutter.

**For 2.5° roof pitches, use the tray designed for the next higher pitch, eg for a 32.5° roof pitch use a 35° tray.

†For 75mm course heights use Intra Weep AT Abutment Trays.

Appearance of flashing

Due to the size of blocks the amount of exposed flashing may not be aesthetically acceptable. This can be reduced by one of the following methods:

Using brickwork around the cavity trays
The bricks will be hidden by the flashings. In this case use Intra Weep AT Abutment Trays, see page 10 for further information.

Rendering the wall

Rendering should not be applied directly to flashings as this restricts movement and could cause splitting of the flashing or detachment of the rendering. Fix expanded mesh to the blockwork, extending down to a bellcast stop bead 150mm off the finished roof line, partly covering the lead; this provides a key for the render and enables the lead to move.

The rendering will block the tray discharge channels, so an MV660 Microvent Weephole is supplied with the Catchment Tray. Ensure this is kept clear of render and mortar.

Rendering to reduce exposed lead

expanded metal fixed to blockwork extending down to bead, to provide key for rendering

bellcast bead fixed to blockwork forming stop for rendering

flashing visible

roof underlay

150mm

Due to the size of blocks the amount of exposed flashing may not be aesthetically acceptable. This can be reduced by one of the following methods:

Using brickwork around the cavity trays
The bricks will be hidden by the flashings. In this case use Intra Weep AT Abutment Trays, see page 10 for further information.

Rendering the wall

Rendering should not be applied directly to flashings as this restricts movement and could cause splitting of the flashing or detachment of the rendering. Fix expanded mesh to the blockwork, extending down to a bellcast stop bead 150mm off the finished roof line, partly covering the lead; this provides a key for the render and enables the lead to move.

The rendering will block the tray discharge channels, so an MV660 Microvent Weephole is supplied with the Catchment Tray. Ensure this is kept clear of render and mortar.

Rendering to reduce exposed lead

expanded metal fixed to blockwork extending down to bead, to provide key for rendering

bellcast bead fixed to blockwork forming stop for rendering

flashing visible

roof underlay

150mm

Due to the size of blocks the amount of exposed flashing may not be aesthetically acceptable. This can be reduced by one of the following methods:

Using brickwork around the cavity trays
The bricks will be hidden by the flashings. In this case use Intra Weep AT Abutment Trays, see page 10 for further information.

Rendering the wall

Rendering should not be applied directly to flashings as this restricts movement and could cause splitting of the flashing or detachment of the rendering. Fix expanded mesh to the blockwork, extending down to a bellcast stop bead 150mm off the finished roof line, partly covering the lead; this provides a key for the render and enables the lead to move.

The rendering will block the tray discharge channels, so an MV660 Microvent Weephole is supplied with the Catchment Tray. Ensure this is kept clear of render and mortar.

Rendering to reduce exposed lead

expanded metal fixed to blockwork extending down to bead, to provide key for rendering

bellcast bead fixed to blockwork forming stop for rendering

flashing visible

roof underlay

150mm
The size of cover flashings required for blockwork abutments can be very large and expensive. It is possible to maintain the weather integrity of the abutment and both improve the finished appearance and reduce the cost of the flashings by utilising 75mm coursed Intrawill trays along the line of the abutment and subsequently ‘course out’ above the trays to resume the larger module size of the blocks. The coursing work will be hidden by the subsequent render application as shown.

Random course stonework
The random nature of natural stonework course heights can result in variable, and sometimes, unsightly weather flashings along the line of the roof abutment, detracting from the overall aesthetics.

Coursing in with 75mm course height Intrawill trays along the line of the abutment will provide a neat, consistent coursing to the flashings, and the stonework can be coursed above the abutment line to retain its random appearance.

Any coursing work below the cavity trays will be completely hidden by the subsequent weather flashings as depicted here.
HT HORIZONTAL TRAYS

Use
HT Horizontal Trays are used:
- at top edge abutments of lower level pitched roofs
- where flat roofs abut the outer leaf of a cavity wall
- at changes of level where AT Trays are not appropriate, eg on sloping ground
- where brickwork is built off a concrete slab or structural ring beam
- at the base of masonry cavity walls
- over air bricks, ducting and other services which bridge the cavity.

Advantages
- Suitable for brickwork and blockwork.
- Self-supporting design allows trays to be used with cavity widths from 50mm upwards without the need to build-in to the inner leaf.
- Avoids the need to build inner and outer leaves together and to line up bed joints in brickwork and blockwork leaves.
- The tray lip projects slightly from the wall when installed. This gives a neater appearance than conventional dpcs and prevents pointing over, a common fault.
- Preformed from ABS, with internal and external angles and stop ends.
- Optional factory-fitted AluFlash or lead flashings remove the need to rake out joints and point in flashings, saving time, cost and additional trades.
- Integral butyl jointing bead ensures overlap of at least 100mm as recommended by BS 8215 (Section 6.3 Table 3). Each component has a pre-applied butyl seal.
- Complies with BS EN 1996-2.
- Comprehensive installation instructions provided.

HT Tray range

HT5 Horizontal Tray,
1125mm lengths (5 brick module). Shorter lengths also available or can be easily cut on site

Factory applied butyl jointing bead

HT21 Internal corner
HT22 External corner
Overcome the problem of site fabrication of difficult junctions. Overlap with HT Trays to form a continuous weatherproof cavity tray.

HT11 Left hand stop end
HT12 Right hand stop end
Provide protection to the ends of a tray run, preventing moisture from entering the cavity in compliance with BS EN 1996-2 and BS 8215.

Bed Weep or MV650 Perpend Weep
Option of fitting in bed or perpend joint to allow water to drain from the trays in compliance with BS EN 1996-2 and BS 8215. The Bed Weep mortar protection tab is removed after installation to leave a clean and effective weep hole.
HT HORIZONTAL TRAYS

HT Trays with factory-fitted flashing
HTTrays are also available with factory-fitted AluFlash* or code 4 lead flashings to BS EN 12588, for use at the abutment of a lean-to or flat roof with a wall. HT trays fitted with AluFlash are supplied with 225mm flashings suitable for all applications.

Long or short lead flashings are available to dress down over the roof covering in accordance with Lead Sheet Association recommendations as follows:
- long flashings: roof pitches below 30º
- short flashings: roof pitches 30º and above.

For flat roofs use the short flashing to cover the roof upstand by a minimum of 75mm. Where high-level ventilation is required, use HT Trays with short flashings and the MR50 Monovent (refer to the Glidevale Abutment Ventilation Brochure).

Roof pitch below 30º
HT Tray with long factory-fitted lead flashing

Roof pitch 30º or above
HT Tray with short factory-fitted lead flashing

Use of HT Trays with factory-fitted AluFlash or lead flashing and MR50 Monovent
providing unobtrusive ventilation to top edge abutments of lean-to roofs.

Fixing position of Monovent varies according to roof pitch

Long flashing for roof pitches below 30º or deeply profiled roof tiles

Short flashing for roof pitches 30º and above

HT Trays with factory-fitted flashing

<table>
<thead>
<tr>
<th>Tray type</th>
<th>Brick module</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT3</td>
<td>3</td>
<td>675</td>
</tr>
<tr>
<td>HT4</td>
<td>4</td>
<td>900</td>
</tr>
<tr>
<td>HT5</td>
<td>5</td>
<td>1125</td>
</tr>
<tr>
<td>HT21</td>
<td>Internal corner</td>
<td>-</td>
</tr>
<tr>
<td>HT22</td>
<td>External corner</td>
<td>-</td>
</tr>
</tbody>
</table>

†Add /L for long flashing or /S for short flashing.

Installation of external and internal corners

<table>
<thead>
<tr>
<th>Tray type</th>
<th>Brick module</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT3</td>
<td>3</td>
<td>675</td>
</tr>
<tr>
<td>HT4</td>
<td>4</td>
<td>900</td>
</tr>
<tr>
<td>HT5</td>
<td>5</td>
<td>1125</td>
</tr>
<tr>
<td>HT21</td>
<td>Internal corner</td>
<td>-</td>
</tr>
<tr>
<td>HT22</td>
<td>External corner</td>
<td>-</td>
</tr>
</tbody>
</table>

†Add /L for long flashing or /S for short flashing.

Table 3

Installation of external and internal corners

- HT22 External Corner
- Tray lip prevents mortar bridge
- HT Trays with factory-fitted flashing
- HT Horizontal Trays with factory-fitted flashing
- HT Internal corner
- HT External corner
- Use of HT Trays with factory-fitted AluFlash or lead flashing and MR50 Monovent
- providing unobtrusive ventilation to top edge abutments of lean-to roofs.
- Fixing position of Monovent varies according to roof pitch
- Long flashing for roof pitches below 30º or deeply profiled roof tiles
- Short flashing for roof pitches 30º and above
Specification clauses

HT Horizontal Trays (without factory-fitted flashing)
Provide horizontal cavity trays to comply with BS 8215. Trays to be Z-Led HT Horizontal Trays, preformed and self-supporting. Install in accordance with manufacturer’s instructions using Bed Weeps and other HT Tray accessories, with pre-applied butyl seal at each overlap.

HT Horizontal Trays (with factory-fitted flashing)
Provide horizontal cavity trays to comply with BS 8215. Trays to be Z-Led HT Horizontal Trays, preformed and self-supporting. AluFlash or code 4 lead flashing to BS EN 12588 factory-fitted to each tray with butyl seal between lead and tray, to suit roof pitch. Install in accordance with manufacturer’s instructions using Bed Weeps and other HT Tray accessories, with pre-applied butyl seal at each overlap.

Supplied by Glidevale Ltd, 2 Brooklands Road, Sale, Cheshire M33 3SS, Tel: 0161 905 5700, Fax: 0161 905 2085, Email: info@glidevale.com.
HTR REFURBISHMENT TRAYS

Use
HTR Refurbishment Trays are used for refurbishment work and repairs to failed cavity trays. HTR Trays are particularly useful where an extension with a lean-to or flat roof is built against an existing cavity wall.

Advantages
- Each 550mm unit is supplied with an integral bedweep, so no separate weepholes are required.
- The 2 1/2 brick length is designed for ease of sequential installation.
- The self-supporting design allows the trays to be used with cavities of varying width from 50mm upwards without the need to build-in to the inner leaf.
- The tray lip projects slightly from the wall when installed. This gives a neater appearance than conventional dpc materials and avoids being pointed over, a common fault which can form a bridge for damp.
- Complies with BS EN 1996-2.
- Comprehensive installation instructions provided.

HTR Trays with factory-fitted flashing
HTR Trays are also available with factory-fitted AluFlash* or code 4 lead flashings to BS EN 12588, for use at the abutm ent of a lean-to or flat roof with a wall. These remove the need to rake out joints and subsequently point in flashings, saving time, cost and the need for additional trades.

Long or short flashings are available to dress down over the roof covering in accordance with Lead Sheet Association recommendations as follows:
- long flashings: roof pitches below 30°
- short flashings: roof pitches 30° and above.

For flat roofs use the short flashing to cover the roof upstand by a minimum of 75mm. Where high-level ventilation is required, use HTR Trays with short flashings and the MR50 Monovent.

HTR Refurbishment Tray

HT11 Left hand stop end
HT12 Right hand stop end
Provide protection to the ends of a tray run, preventing moisture from entering the cavity in compliance with BS EN 1996-2 and BS 8215.

HTR Tray with factory-fitted flashing

* cross-corrugated finish only
Installation method

Cut out three bricks. Fit an HT11 stop end to an HTR Tray unit and install on a bed of mortar at the start of the run.

Replace two bricks, wedged and bedded on mortar, then cut out the next two bricks.

Install the next HTR Tray unit on a mortar bed, overlapping the first tray by 100mm and sealing the joint with the integral butyl jointing bead.

Continue along the wall in the same way. Fit a HT12 stop end at the end of the run.

Specification clauses

HTR Refurbishment Trays (without factory-fitted flashing)
Provide horizontal trays to comply with BS 8215. Trays to be 2-Led HTR Refurbishment Trays, preformed and self-supporting with integral weep. Install in accordance with manufacturer’s instructions using where necessary HTR accessories, with pre-applied butyl seal at each overlap.

HTR Refurbishment Trays (with factory-fitted flashing)
Provide horizontal trays to comply with BS 8215. Trays to be 2-Led HTR Refurbishment Trays, preformed and self-supporting with integral weep. AluFlash or code 4 lead flashing to BS EN 12588 factory-fitted to each tray with butyl seal between lead and tray, to suit roof pitch. Install in accordance with manufacturer’s instructions using where necessary HTR accessories, with pre-applied butyl seal at each overlap.

Supplied by Glidevale Ltd, 2 Brooklands Road, Sale, Cheshire M33 3SS, Tel: 0161 905 5700, Fax: 0161 905 2085, Email: info@glidevale.com.
Use
The Z-Led Preformed Multi-crease system has been developed for use in larger commercial projects where there may be many repetitive or complex cavity tray design details. The system comprises preformed straight runs and moulded or welded accessories, all purpose-made in polypropylene copolymer to match exactly the constructional detailing.

Advantages
- Bespoke products reduce wastage on site and ensure a faster installation than traditional methods.
- Preformed moulded or welded accessories remove the need for site fabrication and are more reliable.
- Cavity tray widths and other dimensions tailored to each application and detail.
- Proven bitumen butyl jointing system.
- Trays do not require support across the cavity.
- Non-slip textured finish for improved mortar adhesion.
- Factory-fitted AluFlash or code 4 lead flashings to BS EN 12588: 2006 available where required, in a range of weights.

Accessories
Commonly used preformed accessories are shown. Others can be made to order.

Some units are designed for building-in to both leaves of a cavity wall: either brick-brick or brick-block. Others are built-in to the outer leaf and rest against the face of the inner leaf, column etc.

Preformed sections
Commonly used preformed sections; other shapes can be made to order.
External corner
surface-fixed

Stop end
surface-fixed
(right hand shown)

Change of level
surface-fixed
(right hand shown)

Change of level
brick/block-brick
(right hand shown)

Typical applications
Window sills
MCR preformed
cavity tray unit

Cavity closer

Column at intermediate
concrete floor
MCR preformed cavity
trays to fit around column

Bed weep
Tray continues beyond window reveal with preformed stop end
PT PARAPET TRAYS

Use
PT Parapet Trays, manufactured from pre-creased polypropylene, are used for parapet walls to flat and pitched roofs where both brick skins are exposed to weather.
BS EN 1996-2 and BS 8215 recommend a cavity tray stepped down at least 150mm. There is no recommendation as to which way the tray should step down. If stepped inwards, moisture could travel along the underside of the tray and into the building; however, this is only likely in very exposed situations. If stepped outwards, the tray will direct water to the outer face of the wall which may cause staining.

Advantages
- Can be installed to direct water inwards or outwards as required.
- Complies with BS EN 1996-2 and BS 8215.
- Comprehensive installation instructions provided.
- Formed from continuous roll to reduce joints and overlaps.

Specification clause
PT Parapet Trays
Provide parapet trays to comply with BS 8215. Trays to be preformed Z-Led Parapet Trays tied to both inner and outer leaves, preformed and self-supporting. Install in accordance with manufacturer’s instructions using Bed Weeps and other PT Tray accessories, with pre-applied bitumen butyl seal at each overlap.

Supplied by Glidevale Ltd, 2 Brooklands Road, Sale, Cheshire M33 3SS, Tel: 0161 905 5700, Fax: 0161 905 2085, Email: info@glidevale.com.

PT Parapet Tray

Advantages

- Can be installed to direct water inwards or outwards as required.
- Complies with BS EN 1996-2 and BS 8215.
- Comprehensive installation instructions provided.
- Formed from continuous roll to reduce joints and overlaps.

Bed Weep or MV650 Perpend Weep
Option of fitting in bed or perpend joint to allow water to drain from the trays in compliance with BS EN 1996-2 and BS 8215. Gives a neater appearance than an open perpend. The Bed Weep mortar protection tab is removed after installation to leave a clean and effective weep hole.

PT22 Universal Corner 90°
Reversible for internal or external corners, and to discharge outwards or inwards.

PT12 Stop End
(right hand)
Prevents moisture from entering the cavity at the ends of tray runs.

PT11 Stop End for left hand applications (not shown).

Coping System

PT Tray directing water inwards

PT Tray directing water outwards

Tape
2m x 12mm Bitumen Butyl Jointing Tape

150 or 225mm

100mm

50, 75 or 100mm

100mm

100mm

100mm

100mm
Use
LT Lintel Trays, manufactured from pre-creased polypropylene, are used with steel lintels over openings. Steel lintels are sometimes claimed to act as cavity trays, but they lack stop ends, so there is a risk of water leakage at the ends unless they are extended well beyond the length needed for structural purposes. BS EN 1996-2 and BS 8215 recommend the use of cavity trays with stop ends over all openings. There is also a risk of corrosion of the lintel if the protective coating is scratched during bricklaying.

LT Lintel Trays with LTU Stop Ends solve all these problems. As steel lintels should last at least 60 years, they are a small price to pay for added protection.

For concrete or stone lintels it is normally possible to use HT Horizontal Trays with stop ends.

Advantages
- Suitable for brickwork and blockwork.
- Self-supporting design can be used with cavities from 50mm to 100mm without building-in to inner leaf.
- Stop Ends supplied separately can be positioned to fit brick perpends.
- Complies with BS EN 1996-2.
- Non-slip textured finish for improved mortar adhesion.
- Supplied by the metre to a maximum of 50m per roll; accommodates 1, 2 or 3 brick course heights.
- Suits most common types of steel lintel including Catnic, IG, BAT, Dorman Long, Birtley, Rom, Hilsmit and Asset Building Components.

Specification clause
LT Lintel Trays
Provide lintel trays at all openings to comply with BS 8215. Trays to be Z-Led LT Lintel Trays, preformed and self-supporting. Install with Bed Weeps and LTU Lintel Tray Stop Ends with pre-applied bitumen butyl seal, in accordance with manufacturer’s instructions.

Supplied by Glidevale Ltd, 2 Brooklands Road, Sale, Cheshire M33 3SS, Tel: 0161 905 5700, Fax: 0161 905 2085, Email: info@glidevale.com.
Use
Z-Led arch trays provide fully effective dpc protection to cavity walls above arched and curved openings.

Self-supporting designs do not need tying in to the inner leaf. LTU Stop Ends and Bed Weeps supplied separately.

Conventional dpcs cannot be easily site fabricated into a suitable shape for arch protection. The common practice of providing a horizontal dpc across the crown of the arch leaves the arch masonry and adjacent brickwork unprotected against water penetration.

AR Arch Tray
Provides full dpc protection to arches constructed with temporary formwork.

Advantages
- Enables traditional formwork construction methods.
- Design does not require tying in to the inner leaf of masonry.
- Purpose-made to rise, radius and shape required.
- Manufactured from durable polypropylene.

BE Bullseye Window Tray
Preformed 360° tray providing full dpc protection around a circular or bullseye window.

Advantages
- Purpose-made to window size.
- Positively drains to the outside.
- Two-piece design assists installation.
- Manufactured from durable polypropylene.
CT CHIMNEY TRAYS

CT metal chimney trays protect against water penetration at high or low level.

- Comply with Building Regulations and NHBC Standards, which require the use of metal trays in chimneys.
- Preformed components help to achieve a high standard of appearance.

CTHL Chimney Tray, High Level
Required to prevent the entry of water at high level where a chimney rises through a pitched roof; suitable for new-build or remedial work. Minimises disturbance to surrounding construction in remedial work.

Material: Lead sheet to BS EN 12588 ‘Specification for milled lead sheet for building purposes’. Code 4 as standard, code 5 to special order.

Standard sizes: 800 x 800mm, 900 x 900mm, 950 x 950mm.
To suit either 195mm square or 195mm diameter circular flue. Other sizes to special order.

CTLL Chimney Tray, Low Level
Required at low level where a cavity-walled chimney with brick shoulders is built on to an external wall; the tray prevents water which may enter the shoulders from penetrating to the inner leaf of the wall.

Material: 1mm aluminium alloy sheet to BS EN 485-1-A1 ‘Aluminium and aluminium alloys. Sheet strip and plate. Mechanical properties’. This has a higher melting point than lead, so is suitable for installation close to a heat source.

Standard size: to suit 1115 x 510mm chimney. Other sizes to special order.

Note: Lead or aluminium sheet built into brickwork or concrete as a damp proof course should be protected with a thick coat of bitumen paint before installation.
ASG ABUTMENT SECRET GUTTER

Use
The ASG Abutment Secret Gutter is for use where the sloping edge of a flat interlocking tiled roof abuts a wall. With flat tiles, there is a risk of water penetration by capillary action between the lead or other oversoakers and the tiles, particularly on exposed sites or at low roof pitches. Because of this BS 8000: Part 6 recommends the use of a secret gutter in these conditions.

Care is required in the design of secret gutters; a 40mm gap is recommended between the face of the abutment wall and the tile edge to allow for cleaning out leaves and debris.

Advantages
- Preformed shape and light weight enables quick and easy installation.
- Reduces the risk of theft from site as the product is of no value to thieves.
- Positive 25mm upstand obviates the need for capillary weather bars which cause adjacent tiles to kick up.
- Complies with recommendations of BS 8000: Part 6.
- Designed in accordance with Lead Sheet Association dimensional requirements.
- Resistant to UV light degradation.
- Fire rating: designated AB to BS 476: Part 3.
- Pultruded GRP with additional surface gel coat.
- Comprehensive installation instructions provided.

The ASG Abutment Secret Gutter should be used in conjunction with Z-Led Intra Weep Abutment Trays with factory-fitted flashings.

In sheltered situations use trays with short flashings.

In exposed situations, use trays with long flashings secured by clips to act as a cover flashing.

Typical applications
Sheltered situations
- Intra Weep AT Tray with factory-fitted short flashing dressed over gutter upstand

Exposed situations
- Intra Weep AT Tray with factory-fitted long flashing dressed over tiles

Specification clause
ASG Abutment Secret Gutter
Provide abutment secret gutters to comply with BS 8000: Part 6. Gutters to be preformed Z-Led ASG Abutment Secret Gutter with AB fire rating to BS 476: Part 3. Install in accordance with manufacturer’s instructions.

Supplied by Glidevale Ltd, 2 Brooklands Road, Sale, Cheshire M33 3SS, Tel: 0161 905 5700. Fax: 0161 905 2085. Email: info@glidevale.com.
THE GLIDEVALE PRODUCT RANGE

- Chimney cavity trays
- LT Tray over window
- Abutment cavity trays
- Bullseye window trays
- Arch tray
- Ground floor gas and damp protection
- Horizontal cavity trays
- PT parapet tray
Environment / Operational Information

As part of our commitment to minimising our impact on the environment, and to continuous improvement in our methods of operation, Glidevale is accredited to ISO14001 Environmental Management, OHSAS 18001 Health and Safety Management and ISO 9001 Quality Management Systems.

Technical Support

Glidevale offer a full technical advisory and estimating service. Contact our Technical Services Department on 0161 905 5700 for further information or to request a complete schedule and quotation covering all products required.

Other Products

Glidevale market a range of other products including:

- Ground floor gas and damp protection products.
- G Range tile and slate ventilators.
- In-line tile and slate ventilators.
- Abutment ventilation.
- Loft access traps/ladder.

REFERENCES

Building Regulations (England and Wales)
Protection against ground moisture and rain penetration are required by the Building Regulations Part C for England and Wales. The relevant requirements are:

‘Resistance to moisture
C2 The floors, walls and roof of the building shall adequately protect the building and people who use the building from harmful effects caused by:
(a) ground moisture
(b) precipitation and wind-driven spray.’

Similar requirements apply in other parts of the UK and Ireland.

The Building Standards Technical Handbook 2013
Section 3.10 ‘Every building must be designed and constructed in such a way that there will not be a threat to the building or the health of the occupants as a result of moisture from precipitation penetrating to the inner face of the building.’

Republic of Ireland

Part C Site preparation and resistance to moisture 2004
Document C4 ‘The floors, walls and roof of a building shall be so designed and constructed as to prevent the passage of moisture to the building or damage to the fabric of the building.’

Building Regulations (Northern Ireland) 2012
Technical Booklet C

NHBC
Chapters 6.1, 6.2 and 7.2